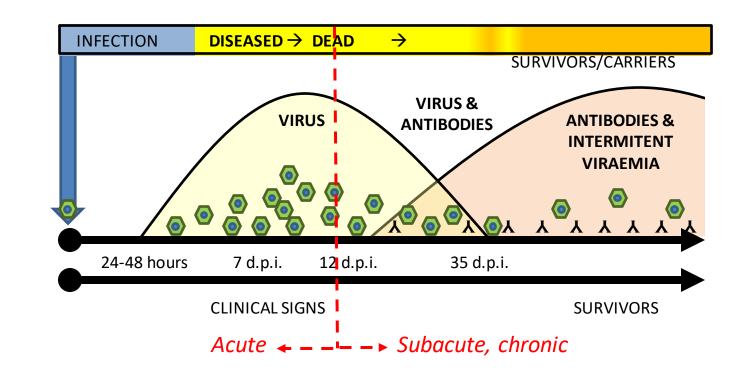
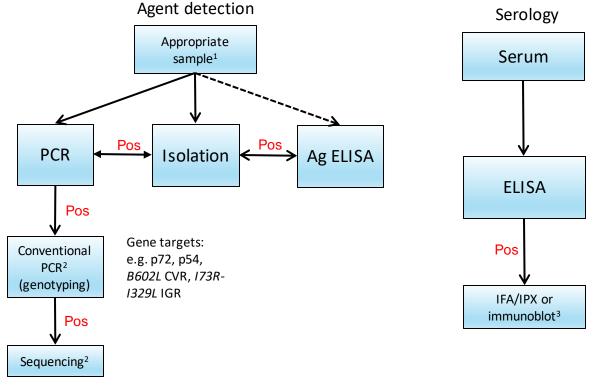


African swine fever laboratory diagnostics


GF-TADs African swine fever (ASF) Coordination Virtual meeting David Williams | 25th August 2021

Australia's National Science Agency

African swine fever diagnosis


- Since **no vaccine** available, rapid and early detection is essential to implement control measures
- ASF **cannot** be diagnosed based on clinical signs alone because of its similarity with other haemorrhagic diseases
 - e.g. CSF, PRRS, erysipelas
- <u>Laboratory testing</u> is therefore essential, using virus or antibody detection methods
- Several <u>field diagnostic</u> (pen-side) tests also available
- Different forms of ASF now recognised in the region

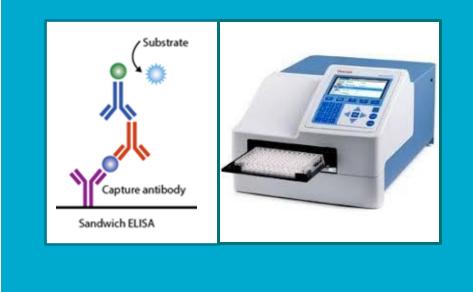
CSIRO

- <u>Acute disease</u>: virus detection (PCR, antigen) is most useful, serology of lower diagnostic value since most pigs die before antibody response (7-10 days)
- <u>Chronic or subacute disease</u>: both virus detection and serology can be used since pigs typically survive long enough to seroconvert

Laboratory diagnostic algorithm for ASF

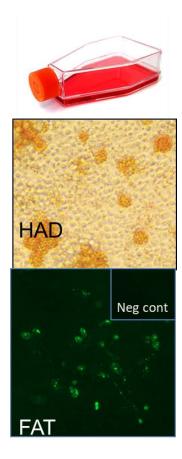
- 1. EDTA blood, lymph nodes, spleen, tonsils, kidneys
- 2. At start of outbreak/on selected isolates
- 3. For confirmation or clarification

- Detection of partial gene fragments of the ASFV genome (*B646L* gene encoding p72)
- Rapid (~4 hrs) and highly sensitive
- Frontline choice for outbreak investigations and routine diagnostics
- Can detect virus in absence of infectious particles or when at low levels
 - \rightarrow Decomposed tissues, pork products
 - \rightarrow Low/moderate virulence strains

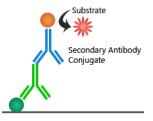


Assay	Target	Format	OIE	Reference
Aguerro	VP72	Conventional	Y	Aguerro et al. 2003. J. Clin. Micro. 41:4431
King	VP72	Realtime	Y	King et al. 2003. J. Virol. Methods, 107:53
UPL	VP72	Realtime	Y	Fernández-Pinero et al. 2013. Trans. Emerg. Dis. 60:48
USDA	VP72	Realtime	N	Zsak et al. 2005. J. Clin. Micro. 43: 112
McKillen	9GL	Realtime	Ν	McKillen et al. 2010. J. Virol Methods. 168:141
Tignon	VP72	Realtime	N	Tignon et al. 2011. J. Virol. Methods. 178:161
Haines*	VP72	Realtime	Ν	Haines et al. 2013. PLoS ONE. 8: e71019
Luo	VP72	Conventional	Ν	Luo et al. 2017. Arch. Virol. 162:191
Ingenasa	VP72	Realtime	Ν	Based on UPL; INgene q PPA
IDEXX	?	Realtime	Ν	RealPCR ASFV DNA Mix
ID.Vet	?	Realtime	Ν	ID Gene [®] African Swine Fever Duplex
Tetracore	VP72	Realtime	Ν	Based on USDA assay
AB	VP72	Realtime	Ν	VetMAX ASF kit
Indical	VP72	Realtime	Ν	Virotype [®] ASFV PCR (based on Haines assay)

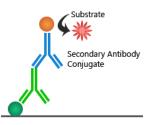
*ASFV/CSFV duplex



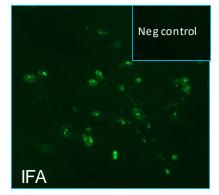
- Double sandwich ELISAs
 - Inexpensive and useful for large scale testing
 - Do not require specialised equipment
 - Commercial ELISA available (Ingezim PPA DAS K2)
 - Diagnostic Se relatively low ~77% (Gallardo et al., 2015)
- Because of low sensitivity, recommended as a 'herd test'
- Can be used for primary diagnosis, if no PCR capacity


- Inoculation of specimen onto primary porcine cells
 - Bone marrow or alveolar macrophages
 - Some cell lines (e.g. MA-104), but less sensitive
- Virus detection by:
 - Haemadsorption assay, immuno-detection, PCR or Ag ELISA
- Expensive to maintain capability
 - Specialised facilities (BSL3), equipment and expertise
- Recommended as a <u>reference test</u> when ASFV has been detected by other methods
 - Especially for primary outbreaks or index cases

- Most commonly used test for antibody detection
 - Recommended for <u>screening</u>
- OIE-recommended 'in-house' ELISA (Pastor et al 1990), using solublised infected cell extract Ag
- Commercial ELISAs available in indirect or competitive formats:


Kit/test	Format	Antigen	Sample type		
ID.vet ID Screen	Competitive	P30	Serum, plasma		
ID.vet ID Screen	Indirect	P30, P62, P72	Serum, plasma, meat juice, blood/filter paper		
Svanovir ASFV-Ab	Indirect	P30	Serum, plasma		
Ingenasa INgezim PPA Compac 1.1PPA.K.3	Competitive	P72	Serum		
Ingenasa INgezim ASF ASFV-R	Indirect	cp312,p30	Serum, spleen exudate, blood/filter paper		

• Advantages:


- Rapid testing and interpretation
- High throughput, automation
- Disadvantages
 - Less sensitive than IPX/IFA, may under-represent seroprevalence in surveillance studies
 - Prone to reduced specificity when poor quality samples used
 - \rightarrow Confirmatory testing important (e.g. at Ref lab)

Immunofluorescence/Immunoperoxidase

- Recommended for <u>confirmatory testing</u>
- Fixed, infected monolayers
 - Glass slides or 96-well plate format
- Advantages:
 - Highly sensitivity, can detect antibodies early in infection
 - Can be adapted for testing large numbers of samples (96-well format)
- Disadvantages:
 - Labour-intensive
 - Requires virus culture capability at BSL3 (or access to fixed slides/plates)
 - Requires microscopic examination of each test
 - Variation in operator interpretation may occur

Source: ACDP

Field tests: Antigen detection

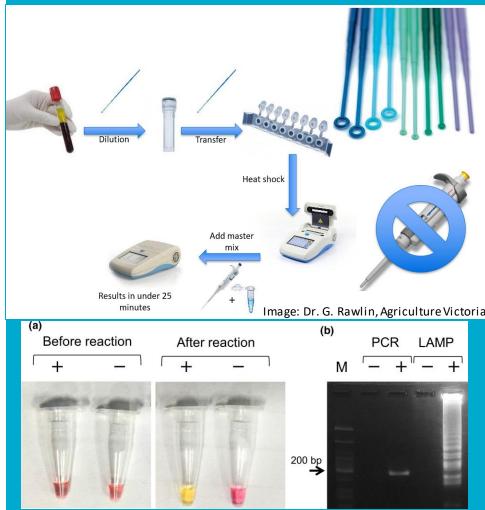
- Early detection for rapid response at or near outbreak
- Fresh EDTA blood (Serum, plasma)
- Several commercial options
 - Lateral flow or dip stick
 - Rapid: 10-25 mins
- DSe/Sp:
 - Ingenasa: ~68%/99%* (Sastre et al. 2016)
 - Shenzhen: ~65%/76%* (Matsumoto et al. 2020)
 - PenCheck: No peer reviewed report
 - Bionote: No peer reviewed report

*Diagnostic Sensitivity/Specificity

		Shenzh	ien LB			Inge	nasa		
۲						1			
I	I	ł	F	H	1	E	07		
		1				Blood	VP72 in Blood		
Positive Whole	Negative Blood	Positive Hemolyze	Negative	Positive Seru	Negative				
	Matsumoto et al. 2020 J. Virol. Methods Sastre et al. 2016 BMC Vet Re Negative Sample (one test line) Positive Sample (two test lines)								
https://www.penchecktest.com/									
			Pen(Check					

- PCR or isothermal methods
- Can be used in the field or in small labs

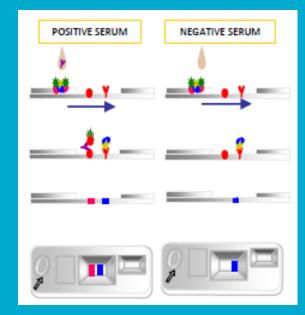
Example: POCKIT PCR


- Analytical and diagnostic sensitivity and specificity comparable to real-time PCR
 - Se/Sp ~100% (FAO)
- Requires DNA extraction
- ~2 hours

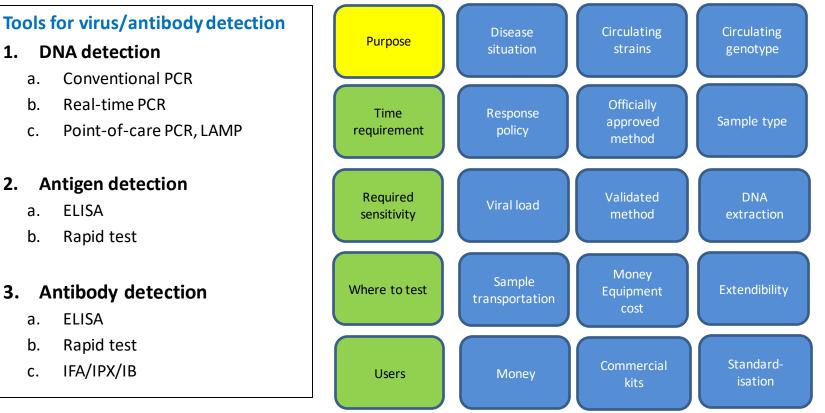
Example: LAMP

- No extraction required for whole blood (1:10) or serum
 - Tissues, pork need to be extracted
 - ~30 mins
- Colorimetric or fluorescence
- Analytical sensitivity lower than real time PCR
 - ~300 gene copies vs ~10-20 copies
- Diagnostic Se and Sp comparable to real-time PCR, up to 100%

Tran et al. 2020. Trans. Emerg. Dis.



- Other commercial PCR platforms:
 - Biomeme
 - Indical IndiField (+PCR kit)
 - Tetracore (+PCR kit)
 - Genesig (+PCR kit)


Field tests: Antibody detection

- Lateral flow devices
- Ingenasa ASF CROM Ag one-step immunochromatographic test
 - Comparable to ELISA
 - Se 99%, Sp 100% (Perez et al. 2011)
 - Evaluated for field use with wild boars (Cappai et al. 2017)
 - Se (81.8%), Sp (95.9%)
- Excelsior Biosystem Sentinel[®] ASF Virus Antibody Rapid Test
- Bionote ASFV Ab Test Kit

Source: Ingenasa product insert

Tools of ASF virus testing and Factors affecting choices

Source: Dr. Ken Inui, FAO

Selection of virus detection tests in different scenarios

WB, whole blood

				Requirements		Virus detection methods				
			Sample	Time	Sensitivity	Ag detection		DNA detection		
	Purpose	Who/Where				Rapid test	Ag ELISA	Convention al PCR	POC PCR (LAMP, etc)	Real-time PCR (or equivalent)
						Sensitity low	Sensitivity medium		Sensitivity High	
1.	Outbreak investigation									
а	Diagnosis of ASF suspected cases	Field Vets	WB	<2hrs	Low	Х			Х	
b	Diagnosis of ASF suspected cases	Provincial lab	WB	<24hrs	Low	х	Х	х	х	х
с	Diagnosis of ASF suspected cases	Government lab	WB	<24hrs	Low	Х	Х	х	х	х
2.	Monitoring/surveillance of virus circulati	on			•				•	•
а	Market	Government lab	Meat	<24hrs	High				Х	х
b	Slaughterhouse	Government lab	WB	<2hrs	High				х	х
e	Farm	Government lab	WB	<24hrs	High				х	х
3.	Movement control				•				•	•
а	Quarantine stations	Quarantine	WB/Swab	<24hrs	High				Х	х
b	Check points between regions/ provinces	Check-point	WB/Swab	<2hrs	High				х	Х
с	Health certificate for pig movement	Government lab	WB	<24hrs	High				х	х
4.	4. Biosecurity check/routine testing at large farm									
а	Routine testing of dead pigs	Producer	WB/Swab	<2hrs	Low	Х	Х	Х	Х	Х
b	Routine testing of sick pigs	Producer	WB/Swab	<2hrs	Medium	Х	Х	Х	Х	Х
с	Quarantine for in-coming replacement pigs	Producer	WB	<24hrs	High				х	х
d	Check truck, feed, semen, equipment	Producer	Swabs	<2hrs	High				Х	X

Selection of antibody detection tests in different scenarios

				Requirements		Antibody detection methods				
	Purpose	Who/Where	Sample	Time	Sensitivity	Rapid test	ELISA	IPX/IFA assay		
1.	1. Outbreak investigation (especially for low virulent/ chronic strains)									
а	Diagnosis of ASF suspected cases	Field Vets	Serum	<2hrs	Low	х				
b	Diagnosis of ASF suspected cases	Provincial lab	Serum	<24hrs	Low		х			
с	Diagnosis of ASF suspected cases	Government lab	Serum	<24hrs	Low		Х	х		
2.	Monitoring/surveillance of virus circulation									
а	Market	Government lab	Meat juice	<48hrs	High		Х	Х		
b	Slaughterhouse	Government lab	Serum	<2hrs	High	х				
e	Farm	Government lab	Serum	<24hrs	High		Х	Х		
3. Movement Control										
а	Quarantine stations	Quarantine staff	Oral fluid	2-24hrs	High	Х	х			
b	Check points between regions/provinces	Check-point staff	Oral fluid	<2hrs	High	Х				
с	Health certificate for pig movement	Government lab	Serum	<24hrs	High		х	х		

Comparison of PoC vs lab methods for virus detection

	Antigen detection				
		Point of care (POC) Test	Laboratory		
Test	Rapid test (lateral flow device)	Isothermal (LAMP, Pockit, etc)	Mobile real-time PCR	Lab-based real-time PCR	
Intended Use	Screening test	POC detection with high sensit	Confirmatory test		
Specimen Type(s)	Blood (serum, plasma)	Blood, serum (tissues)	Blood, serum (tissues)	All specimens	
Sensitivity	Low to moderate	High	High	High	
Specificity	High	High	High	High	
Training	No	Yes	Yes	Yes	
Turnaround Time	15 to 30 min	30 to 120 min	60 to 120 min	60 to 120 min plus sample transportation time	
Cost/test	\$US 4 to 10	\$6 to 25 including DNA	\$6 to 15 including DNA	\$6 to 15 including DNA	
		extration	extration	extration	
Cost of equipment	None	\$1,000 to 15,000	\$7,000 to 15,000	\$30,000+	
	Quick (early detection at POC)	High sensitivity and specificity	High sensitivity and specificity	High sensitivity and specificity	
Advantages	Easy (anyone can perform)	POC detection	POC detection	Official confirmatory test	
Auvantages	Cheap			High throughput	
				Validated assays and commercial kits	
Disadvantages	Sensitivity low to moderate, but good enough for very sick and dead animals	Relatively high equipment cost	Relatively high equipment cost	High equipment cost	
	Outbreak investigation	Outbreak investigation	Outbreak investigation	Outbreak investigation	
	Routine test for sick pigs	Routine test for sick and mortality	Routine test for sick and mortality	Routine test for sick and mortality	
Use		Quarantine	Quarantine	Quarantine	
		Biosecurity check	Biosecurity check	Biosecurity check	
				Movement control	
				Surveillance	
Comments	Needs evaluation of new	Many products coming up. Ma	Gold standard		
comments	products	Suitable for small labs. Automa			

Diagnostic tests – general considerations

- Several <u>commercial</u> and <u>in-house</u> options available for PCR, antigen and antibody detection
 - Laboratory-based
 - Field-based (PoC)
- Different diagnostic tools can be used for different scenarios and for different forms of ASF
 - Selection based various factors
 - Acute vs chronic ASF
 - Endemic vs outbreak response

Australian Centre for Disease Preparedness (formerly Australian Animal Health Laboratory)

Dr. David Williams

Group Leader

OIE Expert at the OIE Reference Laboratory for African swine fever

- t +61352275364
- e d.williams@csiro.au

