Classical swine fever

Trevor Drew
Lead Scientist, Animal & Zoonotic Viral Diseases
OIE Reference Laboratory for CSF
APHA Weybridge
United Kingdom

OIE Regional Workshop, Beijing, July/Aug 2018

Economic impact of CSF

- Netherlands 1997
 - 11 million pigs killed
 - 2.3 billion US dollars (Meuwissen et al., 1999)

- Significant losses in endemic areas
 - Around 26% mortalities
 - Abortions, returns to service
 - Additional costs of control
 - Also losses to abattoirs, processors and retailers

- In extensive pig-holding systems in developing countries the animal and economic losses may be less obvious
 - Provide an important source of protein in communities that are very poor
 - Also "piggy bank" – up to 42% of family income

Pestiviruses - four genotypes:

- Classical swine fever virus
- Bovine viral diarrhoea virus type I (BVDV-I), BVDV-II, BVDV-III (atypical)
- Border disease virus (BDV)

Single strand positive sense RNA, 40-60nm, 12.5kB, one ORF/polyprotein
Family: Flaviviridae

Survival of CSF virus

- Can be regarded as moderately fragile
- May survive long periods under favourable conditions
 - Cool, moist, protein rich
 - Refrigerated meat - 3 months
 - Dry-cured meat - 6 months
 - Environment
 - Sheltered surfaces – 7-14 days
 - Manure - 15 days
 - Water - 6-24 days
- Disinfection – an enveloped virus
 - Sensitive to organic solvents
 - Also all commonly used disinfectants

Transmission of CSF

- Very contagious
 - Pig-to-pig contact
 - Oral and aerosol spread
 - Semen
 - Transplacental
 - Feeding of food scraps/swill
 - Infected pig pens, lorries, equipment, clothing
 - Transmission by needles/instruments
 - Vaccine contamination

Natural hosts of classical swine fever

Genus Sus
- Sus scrofa (wild boar)
- Sus scrofa domestica (domestic pig)
- Chinese breeds?
 - Some say variable...
- Other tribes of Suinae?
 - Pecary (Tayassu spp.), Warthog (Phacochoerus spp.)
 - Bushpig (Potamochoerus spp)
 - Pygmy hog (Sus salvanius)
 - All Yes
- Babyrousa - unknown
Epidemiology of CSF

• Virus endemic in wild pigs
• Also in village pigs in many countries
• Introduction into free countries by:
 – pigs
 – pig products, incl semen
 – Semen
 – Contamination of other biologicals
 – Inadequate containment within laboratories
• Spread by:
 – All of the above
 – Fomite transmission, incl. visitors clothing

Molecular epidemiology – Genotypes of CSF virus

• Compares nucleotide sequences of different regions of the viral genome
• Can distinguish groups and sub-groups
• Can assess the degree of inter-relatedness of isolates
• Can indicate the likely source of a virus in an outbreak
• Utilize complex computer algorithms

EPIDEMIOLOGY and PATHOGENESIS ARE LINKED

CSF - distribution

• Worldwide
 – Endemic in many countries, controlled by vaccination
 – Particularly prevalent in SE Asia
 • Husbandry systems are a challenge to control
 • Also reported in wild pigs in many countries in Asia
 □ South & Central America
 □ Much effort at eradication – some success
 □ Village pigs a problem
 □ Developed countries – mainly free
 □ But still occasionally appears in wild boar in Europe

Pathogenesis of classical swine fever

• Many factors can affect the clinical signs and pathology
 – Virulence of the virus
 – Health of the pigs
 • concurrent / 2° infections
 • Other stress factors eg environment, crowding
 – Age of the pigs
 – immune competence
 – nutritional condition

CSF virulence

• Field strains vary widely in virulence
• High virulence
 – acute disease, high mortality
 – Outcome independent of host factors
• Moderate/low virulence
 – subacute/chronic, low mortality
 • but may be high mortality in fetuses and newborns
 • Host factors can affect outcome of infection
CSF infections - three forms

1. Acute
 - postnatal, high virulence
2. Chronic
 - postnatal, moderate virulence
3. Late-onset - congenital infection
 - prenatal, low virulence

Epidemiology of infection - high virulence strains

- Highly contagious
 - large amounts of virus excretion
 - oronasal & lacrimal secretions, urine, faeces
- Fast spread
 - pig-to-pig
 - mechanical vectors
 - personnel, pets, birds, arthropods
- Pig density a significant factor

Epidemiology of infection - low virulence strains

- Infection often unnoticed
 - in utero transmission
- Short period of virus excretion during acute infection
 - lower levels of virus
- Large quantity of virus at farrowing
- Congenitally infected piglets a continuous source of spread

CSF - early clinical signs

- First appearance - only a few affected pigs
 - Drowsy, less active
 - arched backs / chilled
 - drooping head / straight tail
 - reduced appetite
 - marked anorexia
 - fever - to 42°C or more
- Drop in leukocyte count - 3 to 9 x 10^3 per mm^3
- Eyes - marked discharge/conjunctivitis
- Constipation, turning to grey diarrhoea
- Vomiting - bile

CSF - the outbreak

- More pigs show clinical signs
- Early-affected pigs:
 - gaunt, hollow-flanked
 - weaving, staggering gait - weak hindquarters
 - posterior paralytic
 - purplish discoloration over abdomen, ears, snout, medial sides of legs
 - High virulence - death 10 to 20 dpi
 - medium virulence - death within 30 days

CSF: very sick sow IP9

(UK infectious premise 2000)
Chronic CSF
(Mengeling & Packer, 1969)

- Clinical improvement after acute phase
- Persistent leukopenia
- Second phase of illness
- Anorexia and depression
- Fever, death
- Survivors: growth retarded, skin lesions, arched backs. Can live for 100+ days
- Live for 100+ days
- "Textbook" lesions of CSF are seen
- Seropositive – lab levels may fluctuate
- Virus positive
- PCR or antigen ELISA
- Antibody may interfere with AgELISA
- "Textbook" lesions of CSF are seen

CSF (IP1)

Note skin lesion
Distribution - not typical

CSF - encrusted eyelids - conjunctivitis
CSF - skin lesions

CSF (IP6) - skin lesions on perineum

CSF - more extensive skin lesions (EURL Hannover)

Late onset disease - Congenital infection
(van Oirschot & Terpstra 1977)

- High amounts of virus excreted
- gradually aggravating depression and anorexia
- normal to slightly elevated temperatures
- conjunctivitis, dermatitis, locomotory dysfunction
- Death - 2 to 11 months
- Seronegative – MUST detect virus to identify them!
 • PCR or antigen ELISA
 • If one detected, cull whole litter

Gross pathology: lesions of acute CSF (1)

- Multiple haemorrhages - various sizes
 - haemorrhages of lymph nodes
 • peripheral or diffuse - marbled red to near-black
 • LN swollen, oedematous, haemorrhagic
 • virtually all LN may be affected
 - haemorrhages of kidney
 • petechiae to acchymotic
 • more frequently on cortex
 • Also seen in urinary bladder, larynx, epiglottis, heart, intestinal mucosa, serous and mucous membranes, skin (cyanotic)
Hepatogastric lymph nodes - enlarged & haemorrhagic

Gross pathology: lesions of acute CSF (2)

- Infarction of the spleen
 - almost pathognomonic
 - disrupted blood flow - occlusion of capillaries by thrombi
 - Raised, dark blebs of various sizes
 - singly, or as a series, coalescing along the edge of the spleen
 - Similar lesions in gall bladder and tonsil
- Septicemic complications
 - Suppurative tonsillitis
 - Fibrinous bronchopneumonia

Splenic infarcts

Kidney haemorrhages
Gross pathology: lesions of acute CSF (3)

• mummification, stillbirth, malformations
• in stillborns:
 • subcutaneous oedema
 • hydrops ascites
 • hydrothorax
 • deformities of head and limbs
 • hypoplasia
• in newborns:
 □ petechial haemorrhages of skin and internal organs

CSF: fetal death, mummification and size variation

Gross lesions of chronic CSF

• Infarction of the spleen
 – less pronounced than acute disease
• Ulceration of caecum and colon
 – often with necrosis - “button ulcers”
• Rib lesions
 – transverse line of semisolid bone across rib, proximal from costochondral junction
 □ growing pigs
 □ sudden calcification of cartilage cells
 □ maybe also on growth plates of long bones

CSF - caecal ‘button ulcers’

Gross lesions of late-onset CSF

• Relatively few overt lesions
• Thymic atrophy
 – most pronounced lesion
• Lymph node swelling

Sick pigs - some other causes

PMWS
PRRS
PDNS
Swine influenza
Prevention and control
Use of vaccination - the theory

• Does NOT prevent infection OR excretion

• Should result in:
 • A lower susceptibility of vaccinated pigs to infection
 • And if subsequently infected:
 – Reduced severity of disease
 – Decreased virus excretion
 – Prevention of in utero infection

Live vaccines - efficacy

• Depends on:
 – Strain and virus titre
 • minimum 100 PO25 per dose
 – Time between vaccination and challenge
 • European Pharmacopoeia - 14 days
 – Age of pigs
 • “C” & “CS” strains - 4 days post-vaccination
 – Benefits within 1 day (Dawulf et al 2003)
 – Protection > 1yr, even lifelong
 – Claimed to prevent congenital infection

Use of CSF vaccine in endemic areas

• Vaccines alone will NOT eliminate disease
 – Maintain sub-clinical infection
 • China, 95%+ coverage, but CSF still present
 • 0.4% mortality due to CSF (Li et al 2000)
 – To be free, MUST stop using vaccines at some stage
 • Cost savings and international trade
 – Vaccine failure CAN occur
 □ Poor transport, storage, coverage or administration
 □ New strains of CSF? NO
 □ NO evidence of C strain vaccine being ineffective against diverse field strains – in fact, quite the contrary

ALL RELY ON EFFECTIVE COLD-CHAIN
Implementation of a control scheme

- Main areas to consider:
 - Regional control is more successful than farm-level control
 - Good farm biosecurity is ESSENTIAL
 - Monitor production figures – piglet survival rates are a good indicator of any problems
 - Veterinary infrastructure
 - Structured surveillance – strategy & demonstrable successes
 - Field diagnosis and sample collection network
 - Secure, quick transport to laboratory
 - Education to farmers
 - Laboratory facilities
 - Prompt, accurate diagnosis
 - Biosecurity issues
 - Vaccine production/cold-chain

In summary

- It is possible to eliminate CSF from herds by vaccination
 - Acute and chronic disease generally eliminated
 - Piglets may be vulnerable at 3-5 weeks
 - In utero transmission may still occur – abortion and PI piglets
 - Piglets may harbour virus for long periods (up to 11 months)
- Live vaccines are safe and very effective
 - C strain – Immunity within 4 days
 - Probably lifelong
 - Work against all strains of CSFV
 - MUST be made by a competent company and transported by an effective cold chain
- Prompt investigation and laboratory diagnosis of suspect cases
 - Passive surveillance also of value
 - Wild pigs
- Good farm biosecurity is also essential
 - For CSF and other diseases
 - In high risk areas, vaccination of young stock and boosters for dry sows