SEACFMD National Coordinators Virtual Meeting

Modelling Spread and Control of FMD

07 July 2020

Cord Heuer, Masako Wada, Art Subharat

Acknowledgements

- Myanmar:
 - Dr Ye Tun Win DG LBVD, Dr Khin Ohnmar, Dr Htun Htun Win, Dr Bolortuya Purevsuren
- Lao PDR:
 - Dr Syseng Khounsy, Dr Laphinh Phithacthep, Dr Viliddeth Souriya, Dr Ashish Sutar
- OIE Bangkok:
 - Dr Ronel Abila, Dr Blesilda Verin
- MPI/Govt. NZ: Andrew McFaden, Kelly Buckle, Dr Daan Vink, Dr Ben Phiri et al.
- Massey University:
 - Dr Masako Wada, Dr Nelly Marquetoux, Dr Jun Han Hee

Expected Outputs

- Output 1: FMD risk assessments conducted in target areas
- Output 2: Control strategies developed and implemented for target areas
- Output 3: Training and technical assistance provided
- Output 4: Coordination workshops conducted and resource materials provided
- Output 5: FMD monitoring, evaluation, and modelling tools established

Purpose of modelling

- Models = decision support tools
- Situation:
 - FMD is endemic: sporadic cases - -> outbreaks
 - Risk based partial vaccination <u>RBPV</u>: ~40% villages vaccinated since 2017
- Questions to be addressed by modelling:
 - Can RBPV sustainably control FMD on the long run?
 - Can RBPV protect ruminants in non-vaccinated areas?
 - What coverage is required
 - What is the impact of long distance movements?
 - If so, where are additional measures required? Market control, awareness etc.

5.3: FMD Modelling

Time-space models developed for Myanmar and Lao PDR: InterSpread Plus

• 2018 base model: data requirement vs available information (Lao PDR, Myanmar)

- 2019: movement survey
- 2020: validate the model, assess its predictive accuracy and evaluate alternative scenarios

Model Features

- Design
 - Unit = village
 - Spatial parameters
 - Time parameters
 - Stochastic: uncertainties
- Transmission mechanisms
 - Livestock movement
 - Local spread
- Within-herd modelling features
 - to capture mixed states of infected, immune and susceptible animals within a village

Model parameters		Values	Data	
Movement	Transmission probability	10%	OI	_
Traders	Distance Frequency	2 – 483 (8) km (pick-up) 3 – 161 (18) km (drop-off) Poisson λ = 0.27 /day (pick-up)	MS	OI: Outbreak investigation MS: Movement survey BS: Baseline survey
Grazing	Distance	Poisson $\lambda = 0.18$ /day (drop-off) 2 - 105 (3) km (out)	MS	SS: Serological survey
Urdzing	Frequency	2 - 113 (6) km (in) Poisson $\lambda = 0.03$ (/day)	1015	Lit: Literature
Local spread	Transmission probability	8, 6, 4, 2 and 1 per 1000 susceptible village-day within 1, 2, 3, 4, 5 km	Other	_
Course of infection	Incubation period	2 - 21 (8) days	Lit	
	Max time of infection	22 – 130 (38) days	OI	
Partial immunity	% villages with immunity	30%	BS	_
	% animals with immunity	30%	SS	
	% reduction in infectivity	50%	BS	
Villagers report	Probability of detection	70%	BS	_
	Probability of report	30%	BS	
	Delay to report	Poisson λ = 18 days	OI	

Validation – 'outbreak investigation vs simulation' – Mingin Township –

Evaluation control scenarios: 'do nothing'

– Central Myanmar –

Simulated FMD spread: 3 villages infected in month 1

Evaluation control scenarios: *'risk based partial vaccination'*

– Central Myanmar –

Number of simulation days

Activities for 2020-2021

- Post baseline survey/ analysis/ reporting early 2020: Lao PDR, early 2021: Myanmar
- 2. FMD impact on Myanmar dairy farm (collaborate with MDEP)
- **3.** Training of trainers for outbreak investigation (August?)
- Follow-up level 2 training for outbreak investigation in Lao PDR and Myanmar
- 5. GIS training (October?)
- 6. PVM for Lao PDR and Myanmar

7. Finalise models for Lao PDR and Myanmar + In-country training

- 8. Prepare manuscripts and submit (2 in 2020 + 6 in 2021)
- **9.** In-country project summary workshop (Lao PDR and Myanmar)

Achievements from a Massey perspective

- Capability to generate information
- The data were key to inform model development
- Confident that by the end of the project, basic disease modelling will have been demonstrated and used by some individuals